11.07 Willie Chavez Park South - Belen

10-year Monitoring Report

2022

Prepared by

Alex Makowicki & Patrick Clay Goetsch With the 2016 work of Kathryn R Mahan & Daniel Hernandez and 2011/2012 work of Joe Zebrowski, New Mexico Forest and watershed Restoration Institute for the Greater Rio Grande Watershed Alliance

Contents

Acronyms and Abbreviations
Purpose of Report4
Ecological Context of Bosque Restoration
Monitoring and Field Methods
Original (2011) protocols5
5 and 10-year revisits (2016 and 2022) protocols6
Personnel Involved7
Bosque Ecological Monitoring Program Sites8
Willie Chavez Project9
Site Summary
Willie Chavez 2011 & 2022 - Observed plant species summary 12
Tree Component
Understory and Bosque Floor Components16
Discussion
References
Appendix I – Photopoint Coordinates Table
Appendix II – Modified Hink and Ohmart Categories, from NMRAM22
Appendix III – Sample Datasheets
Appendix IV – Fuels Transect Data Sheet
Appendix V- Photos

Acronyms and Abbreviations

Acronym, Abbreviation, or Term	Explanation or Definition as used by NMFWRI
BBIRD plots	Breeding Biology Research and Monitoring Database, larger circular plot types
BEMP plots	Bosque Ecosystem Monitoring Program, small rectangular plot types
FEAT	Fire Ecology Assessment Tool
FFI	FEAT/ FIREMON Integrated
FIREMON	Fire Effects Monitoring and Inventory System
FSA	Farm Service Agency, a department of the USDA
GIS	Geographic Information Systems
GRGWA	Greater Rio Grande Watershed Alliance
LIDAR	Light detecting and ranging, a remote sensing technique using light to gather
	elevation data
NAIP	National Agriculture Imagery Program (aerial imagery)
NDVI	Normalized Difference Vegetation Index; GIS term for a band ratio of the visible
	red and the near infrared spectral bands and is calculated using the following
	formula: (NIR – Red)/(NIR+Red)
NHNM	Natural Heritage New Mexico
NMDGF	New Mexico Department of Game and Fish
NMED SWQB	New Mexico Environment Department Surface Water Quality Bureau
NMFWRI	New Mexico Forest and Watershed Restoration Institute
NMHU	New Mexico Highlands University
NMRAM	New Mexico Rapid Assessment Method, version 2.0
NRCS	Natural Resource Conservation Service
PC	Plot center
RGIS	Resource Geographic Information System
SWCD	Soil and Water Conservation District
TIFF	Tagged image file format
USDA	United States Department of Agriculture
USGS	United States Geological Survey
WQCC	Water Quality Control Commission
WSS	Web Soil Survey, a soils database of the NRCS

Purpose of Report

This report covers pre-treatment and 5 and 10-year-post-treatment vegetation monitoring assessments performed on non-native phreatophyte removal projects near Belen, NM submitted by the Valencia Soil and Water Conservation District to the Greater Rio Grande Watershed Alliance in 2011. Following a discussion of the ecological context, and our monitoring methods, we present pertinent background, observations, and assessment results for each project.

Ecological Context of Bosque Restoration

Neither the challenges nor the importance of working in the bosque and other riparian areas in New Mexico today should be underestimated. According to the New Mexico Department of Game and Fish Conservation Division, wetlands and riparian areas comprise approximately 0.6 percent of all land in New Mexico (2012). Despite this small percentage, estimates of New Mexican vertebrate species depending on wetland and riparian habitat for their survival ranges from 55% (New Mexico Department of Game and Fish Conservation Services Division, 2012) to 80% (Audubon New Mexico, 2013). These areas also provide flood mitigation, filtration of sediment and pollutants, and water for a variety of purposes including groundwater recharge (Audubon New Mexico, 2013). In addition, native vegetation such as cottonwoods have cultural significance to many communities.

As much as these areas are disproportionately important to ecosystems and human communities, they are equally disproportionately impacted by disturbance. Anthropogenic impacts with major consequences for our riparian areas include dams, reservoirs, levees, channelization, acequias and ditches, jetty jacks, riprap and Gabion baskets, urbanization, removal of native phreatophytes, grazing by domestic livestock, excessive grazing pressure by native ungulate populations absent natural predation cycles, beaver removal, logging, mining, recreation, transportation, introduction and spread of invasive exotic species, groundwater extraction, altered fire and flood regimes drought and climate change (Committee on Riparian Zone Functioning and Strategies for Management, et al., 2002). Statewide, it is estimated that as much as 90% of New Mexico's historical riparian areas have been lost (Audubon New Mexico, 2013), and approximately 39% of our remaining perennial stream miles are impaired (New Mexico Department of Game and Fish Conservation Services Division, 2012).

New Mexico *is* fortunate enough to have the Middle Rio Grande Bosque, the largest remaining bosque in the Southwest (USDA USFS, 1996). However, over the past two decades, the number of fires in the bosque has been increasing. Historically, the primary disturbance regime in the bosque has been flooding, not fire, which means the system is not fire-adapted. In fact, native species like cottonwood resprout from their roots after floods and need wet soils to germinate from seed. Flooding also promotes decomposition of organic material and keeps the soil moist which reduces the likelihood of fire. Today, overbank flow is uncommon in many areas of the Rio Grande due to the heavy alteration of the channel and flow regimes (two obvious examples are the structures defining the upper and lower extent of the Middle Rio Grande: Cochiti Dam and Elephant Butte Reservoir). This has led to low fuel moisture content and high fuel loads, as well as increased human presence in the riparian area. As a result, bosque fires are more common and more severe: they kill cottonwoods and other native species, creating spaces which are filled by non-native species such as salt cedar, Russian olive, Siberian elm, and Tree-of-Heaven. We are constantly learning more about how these species can exploit and encourage a riparian fire regime, in addition to many other changes they bring to ecosystems. Efforts geared toward the removal of these nonnative species can help to reduce fire risk, preserve native vegetation, and be part of a larger effort to restore the bosque and the watershed as a whole to a more natural and functional ecosystem. The Greater Rio Grande Watershed Alliance (GRGWA) has been working on these issues with a variety of collaborating organizations and agencies within the Rio Grande basin for several years. Since 2013, the New Mexico Forest and Watershed Restoration Institute (NMFWRI) has been working with GRGWA and the Claunch-Pinto Soil and Water Conservation District (SWCD) to begin construction of a geodatabase for all of GRGWA's non-native phreatophyte removal projects as well as to perform the formal pre- and post-treatment monitoring, utilizing a range of field methods as well as LIDAR analysis where appropriate and available.

Monitoring and Field Methods

Original (2011) protocols

Due to the short timeframe between project selection and implementation in 2011/2012, only a narrow window was available to perform pre-treatment monitoring. That window was outside the optimum season for performing vegetation monitoring in this type of landscape. For that reason, a hasty monitoring protocol was developed. This protocol was based on placing photo point plots at locations distributed across the project area and representative of the diversity of the project area. In addition, an estimate of ground and canopy cover by percent within a 1/10-acre circular plot centered at the photo point was determined using ocular estimates. Overstory canopy was determined for a 1/10-acre circular area, also centered at the photo point. Finally, a Hink & Ohmart style vegetation structure assessment was performed. Vegetation species that were observed at each plot and in the project area were recorded. The plot size and density of observations limit the utility of this monitoring for describing overall site conditions or for generating any meaningful statistics.

Cover	Cover (%)										
Tree canopy	Seedlings/saplings <5'/5 – 15'	Shrubs	Gramanoid	Forbs	Litter	Bare Soil	Rock	Gravel	Water or wet		

Figure 1. Categories used for percent cover estimates.

A base map of the project location was constructed using project boundary data provided by New Mexico State Forestry. Planned photo points were selected by visual inspection of May 2011 true-color digital orthorectified aerial photography obtained from the United States Department of Agriculture (<u>http://datagateway.nrcs.usda.gov/</u>). A GIS file for the photo point plots was created using ArcGIS software. Coordinates were derived from the GIS file and loaded into a Garmin GPS 60 CSx Global Positioning System and a Trimble 2005 GeoXM Global Positioning System. The Garmin GPS was used to navigate to the general location of the planned photo point. The actual location of the photo point was determined by visual inspection of the area and selection was based on the ability to physically occupy a position at or near the planned point. The coordinates of the photo point were then collected using the more precise Trimble GeoXM GPS.

Once the plot location was determined, a 1/100-acre radius plot was established by placing pin-flags at 11' 9" from plot center in each cardinal direction. Photos were taken from plot center in each cardinal direction and from a distance north of plot center (66', where possible) toward plot center. Ocular estimates were made of understory canopy and ground cover within the 1/100 plot. Overstory canopy cover was estimated using a concave spherical densiometer, with measurements made in four cardinal directions, approximately mid-way between plot center and the edge of the 1/100-acre plot. This method provides an estimate of canopy cover for a 1/10-acre area centered on the plot. A Hink & Ohmart structure class determination was made using a worksheet developed by SWCA Environmental Consultants (Appendix IV). Finally, plant species observed within the 1/10 area around the plot were recorded, as were other comments document conditions at the plot.

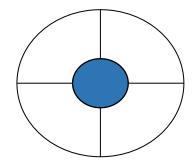


Figure 2. example of plot layout. The outer circle represents the 1/10-acre plot and the blue circle is the 1/100-acre plot

5 and 10-year revisits (2016 and 2022) protocols

To allow comparisons between site conditions, the original site protocols were employed for the 5 and 10-year revisits as well as newer protocols for the 10-year revisit.

Plot locations as recorded in 2011 and 2016 were found using a Garmin GPS, and all plot setup and measurements were the same as in 2011 and 2016, with a few exceptions. In 2016 a ground cover category was added for plant basal/bole, which was omitted from the ground cover in 2011. Further, for both 2016 and 2022 monitoring, in addition to the original Hink and Ohmart structural classification, we recorded the structure type within a modified Hink and Ohmart classification system (see Appendix II). This second Hink and Ohmart-based system is used by the NMED as part of the modified NMRAM protocol employed for pre-treatment monitoring on GRGWA projects beginning in 2013. Additions in 2022 were the inclusion of NMFWRI's Riparian Common Stand Exam-based protocols (https://nmfwri.org/wpcontent/uploads/2020/07/GRGWA_plotprotocols_Instructions_datasheets_with cheatsheets_3.1.2020km.pdf) which added measurements of soil texture; ground and aerial cover on the entire plot as well as aerial cover by individual species, seedling and sapling tallies and individual tree measurements (Appendix III). Individual tree measurements included establishing a witness tree when available, measuring tree height, diameter at breast height (DBH), live crown base height and overall health of the tree. Fuel transects were also established. (Appendix IV).

For the sake of continuity, site visits were made around the same time of year as 5 and 10 years prior, even though this was not the ideal season for plant identification in either case. It is worth noting that the winter of 2016/2017 was warmer than the winter of 2011/2012, so even though site visits were conducted around the same time of year, plant communities differed. This is especially obvious in the

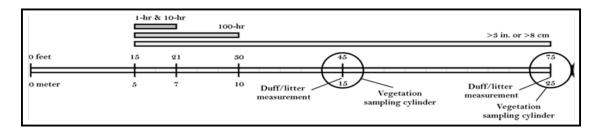


Figure 3. Example of fuels transect

Personnel Involved

2012 Monitoring Team:

- Joe Zebrowski, New Mexico Forest and Watershed Restoration Institute
- Jill Wick, New Mexico Department of Game and Fish

2016 Team:

- Kathryn R Mahan, Ecological Monitoring Specialist
- Christopher B Martinez, Monitoring Technician (NMHU Student Intern)
- Daniel Hernandez, Ecological Monitoring Technician

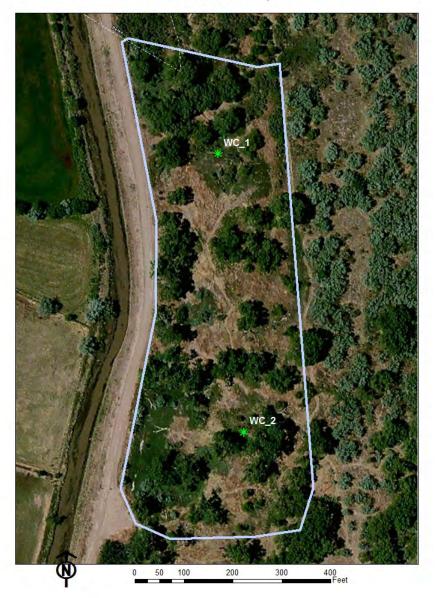
2022 Monitoring Team:

- Alex Makowicki, Ecological Monitoring Technician
- Clay Goetsch, Ecological Monitoring Technician
- Jordan Martinez, Ecological Monitoring Technician

Persons contacted 2011:

- Charlie Lujan, Valencia Soil and Water Conservation District
- Madeline Miller, Valencia Soil and Water Conservation District

Persons contacted 2016:


• Madeline Miller, Valencia Soil and Water Conservation District

Persons contacted 2022:

• Yasmeen Najmi, Middle Rio Grande Conservancy District

Bosque Ecological Monitoring Program Sites

Two Bosque Ecological Monitoring Program (BEMP) monitoring sites were located: WC_1 and WC_2. Both sites are on the west side of the Rio Grande, between the levee road and the drain. These sites were likely disturbed during the treatment activity. Future GRGWA monitoring should strive to integrate BEMP monitoring into the overall project monitoring scheme.

Willie Chavez 2011 Project

Figure 4. BEMP sites present on Willie Chavez.

Willie Chavez Project

The project is located within Valencia County, NM, east of the city of Los Lunas (see Figure 2 below). It is on the west side of the Rio Grande, between the levee road and drain.

The nearby city of Los Lunas receives an average of 9.75 inches of precipitation annually. The average high temperature is 94 degrees in July, and the average low is 18 in December and January (U.S. Climate Data, 2017). According to the NRCS Web Soil Survey, the two project areas are comprised of <1% River wash and the remainder Mixed alluvial land. Ecological sites within this project include R042XA055NM Salty Bottomland (USDA NRCS, 2016).

Salty Bottomland can support a range of plant communities which typically include cottonwood, salt cedar, mixed exotics (dominated by Russian olive/ Russian knapweed/ etc.), saltgrass and saltgrass-sacaton, and bottomland grassland (possibly dominated by saltgrass, giant sacaton, dropseed, muhly, burro grass, alkali sacaton, galleta, vinemesquite, and/or tobosa). Typically, the vegetation consists of a shrub/grass mixture characterized by fourwing saltbush and greasewood. Tall, mid-grass, and short grasses are present. Blue grama, foxtail, sand dropseed, spike dropseed, giant dropseed, New Mexico feathergrass and tansymustard are common. When the plant community deteriorates, there is an increase in amounts of shrubs and short grasses (USDA NRCS n.d.).

Pre-treatment monitoring was conducted at these sites on January 12, 2012 as part of a restoration project targeting non-native phreatophytes scheduled for 2011-2012. Post-treatment monitoring was conducted November 6, 2016. Both sites are located west of the Rio Grande, between the levee and drain. The project was sponsored by the VSWCD. Restoration goals are to restore the area for wildlife use, address fire fuels and access concerns, and to remove non-native woody invasive plants. (Miller, 2008).

		Average Aerial Cover 1/100 Acre								
Year	Tree Canopy	Seedlings <5	Saplings 5-15'	Shrubs <5	Shrubs- Saplings 5-15'	Graminoid	Forb			
2011	13%	0%	0%	2%	6%	2%	59%			
2016	33%	3%	8%	10%	0%	13%	63%			

		Average Ground Cover 1/100 Acre							
Year	Litter	Bare soil	Rock	Gravel	Water or wet soil	Plant basal area			
2011	40%	1%	0%	0%	0%	n/a			
2016	48%	4%	1%	0%	0%	0%			

Cover: Cover for plot 1 was not collected for this site and so 2022 averages could not be calculated.

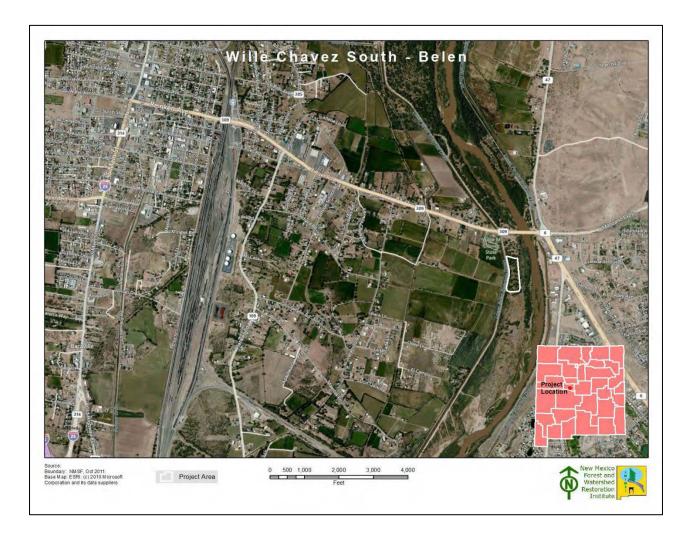


Figure 5. Willie Chavez Park South in geographic context.

Site Summary

2011 Site Observations: The project area is moderately wooded, with a light, multi-tiered understory. It had been treated in the early 2000s. Much of the area consists of grassy openings. Salt grass was noted in the area and salt was noted on the soil surface in several areas. Since monitoring was done so late in the fall, sparse forb and grasses cover may be attributed to seasonal dormancy. The plots were assessed to fall in Hink & Ohmart Structure Classes 1 and 5. Identification of forb, grasses and some shrub species was also impacted by the limited plant identification skills of the monitoring team and by the season. The project area is adjacent to a picnic area and there are several walking trails that pass through the project area.

2016 Site Observations: This project had several open areas supporting yerba mansa communities. The southern boundary was clearly marked by a solid wall of salt cedar. Resprouts of target species (salt cedar, Russian olive, Siberian elm) were observed on plots 2, 5 and 6. The plots were assessed to fall in Hink and Ohmart Structure classes 3 and 4.

2022 Site Observations: The project site was lush with understory vegetation, there were many willows. Of note were the exotic bunch grasses and kochia abundant on the plot.

Willie Chavez 2011 & 2022 - Observed plant species summary

11.07 Willie Chavez			
Vegetation Type/Year	2011	2016	2022
Graminoids	Pascopyrum smithii Western Wheatgrass	Pascopyrum smithii Western Wheatgrass	Thinopyrum obutsiflorum
Forbs	Anemopsis californicc Yerba Mansa	Anemopsis californica Yerba Mansa Bassia Prostrata Kochia Helianthus annuus Sunflower Solanum elaeagnifoliun Silverleaf Nightshade	Anemopsis californicı Yerba Mansa Bassia Prostrata Kochia
Cactus			
Shrubs		Salix exigua Coyote Willow	Salix exigua Coyote Willow Lycium spp Wolfberry
Trees	Salix Gooddingii Goodding's Willow Elaeagnus angustifoli Russian Olive Populus deltoides Rio Grande Cottonwood	Elaeagnus angustifolia Russian Olive Populus deltoides Rio Grande Cottonwood Robinia spp Locust	Salix Gooddingii Goodding's Willow Elaeagnus angustifol Russian Olive Populus deltoides Rio Grande Cottonwood

The majority of the "new" plants observed in 2016 were native species, although kochia and Siberian elm also joined the mix. The target species found in 2012, Russian olive and salt cedar, were still present in 2016, as resprouts. In both years, identification of forb, grasses and some shrub species was impacted by both the plant identification skills of the monitoring team and by the season.

Willie Chavez 2011 Project

Figure 6. Willie Chavez plots.

Tree Component

The tree component consists of data collected on the 1/10 acre plot Measurements of tree's diameter at breast height (DBH), height, live crown base height, condition (live, sick or dead), and any significant mistletoe damage. We analyze tree density using Trees Per Acre (TPA) and basal density Basal Area Per Acre (BA/AC). It should be noted that no trees were recorded in plot 1.

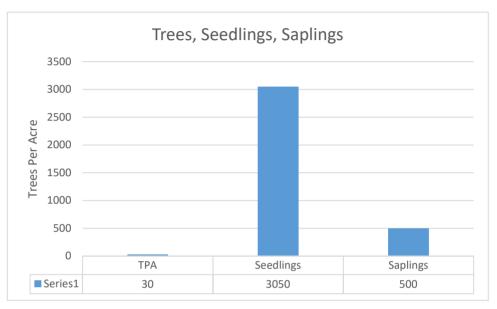


Figure 7. Displays Trees, Seedlings and Saplings per acre for the project

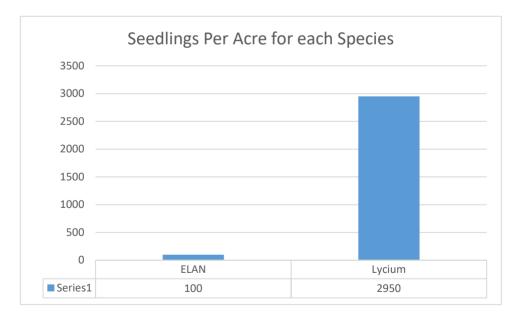


Figure 8. Displays Seedlings per acre for each species

11.07 Wil	lie Chavez	Octol	ber 2022	
Individua	l Plot Sumi	mary Table	9	
Macro Plot Name	Total number of	Growing Stock		
	sample trees on plot	Number of growing stock sample trees on plot	Trees per Acre	Basal Area per Acre
11.07_2	6	6	60	17.10
Total	Total number of	Number of growing	Average Plots	for all
	sample trees on plot 6.00	stock sample trees on plot 6.00	TPA 30.00	BA/AC 8.55

Figure 9. Displays Stand Table Tree summaries for each plot

Understory and Bosque Floor Components

As described above, percent ground cover was estimated at each plot within the 1/100th acre subplot. It should be noted that average cover for 2022 monitoring could not be calculated due to missing cover data for plot 1.

		Average Aerial Cover								
Year	Tree Canopy	Seedlings <5	Saplings 5- 15'	Shrubs <5	Shrubs- Saplings 5- 15'	Graminoid	Forb			
201	1 13%	0%	0%	2%	6%	2%	59%			
201	6 33%	3%	8%	10%	0%	13%	63%			
202	2 47%									

Table 1. Displays average aerial cover for 1/100-acre plot

		Average Ground Cover									
Year	Litter	Bare soil	Rock	Gravel	Water or wet soil	Plant basal area					
2011	40%	1%	0%	0%	0%	n/a					
2016	48%	4%	1%	0%	0%	0%					
2022											

Table 2. Displays average ground cover for 1/100-acre plot

Project: Valencia SWCD

Project Unit: Willie Chavez, 11.07 Plot: 11.07_1

	Aerial cover									
Year	Tree Canopy	Seedlings <5	Saplings 5-15'	Shrubs <5	Shrubs- Saplings 5-15'	Graminoid	Forb			
2011	0%	0%	0%	3%	10%	0%	90%			
2016	25%	5%	15%	20%	0%	0%	50%			
2022	59%									

	WC	1 Aerial	&	Ground	Cover
--	----	----------	---	--------	-------

		Ground cover							
Year	Litter	Bare soil	Rock	Gravel	Water or wet soil	Plant basal area			
2011	10%	0%	0%	0%	0%	n/a			
2016	50%	5%	0%	0%	0%	n/a			

2011 Hink & Ohmart Type: 5

2016 Hink & Ohmart Type: 5

2016 Modified Hink & Ohmart Type: 5 or 6W

2022 Hink & Ohmart Type: 5

2022 Modified Hink & Ohmart Type: 5

```
------
```

2011 Comments: None.

2016 Comments: None

2022 Comments: Dense coyote willow to north and east, with some russian olive; open to the south and west covered in yerba mansa, scattered grasses, and lycium (wolfberry).

Project: Valencia SWCD

Project Unit: Willie Chavez, 11.07

Plot: 11.07_2

				Aerial cove	er						
Year	Tree Canopy	Free Seedlings Saplings Shrubs Saplings									
2011	25%	0%	0%	0%	1%	4%	28%				
2016	0%	0%	0%	0%	0%	25%	75%				
2022	35%	0%	1%	0%	5%	35%	50%				

11.07_2 Aerial & Ground Cover

			Groun	d cover		
Year	Bare Litter soil		Rock	Rock Gravel		Plant basal area
2011	70%	1%	0%	0%	0%	n/a
2016	46%	2%	2%	0%	0%	50%
2022	30%	0%	0%	0%	0%	70%

2011 Hink & Ohmart Type: 1

2016 Modified Hink & Ohmart Type: 1

2022 Hink &	Ohmart	Type: 6
-------------	--------	----------------

2016 Hink & Ohmart Type: 1

2022 Modified Hink & Ohmart Type: 6S

2011 Comments: None.

2016 Comments: Observer commented that the area was a possible playa formation.

2022 Comments: Partially open canopy under cottonwoods, with yerba mansa underneath and a black willow to the north of plot center. Grassy open area to the west and north.

Discussion

We would like to clarify that we are adapting these NMRAM metrics for our own purposes. That is, we are using them both inside and outside their intended site ranges, including on larger sites (NMRAM is designed to handle a site around 100 x 200 meters), sites further from the river (NMRAM is currently in

use primarily for assessing riverine wetlands), and sites defined by exotic vegetation presence rather than hydrologic boundaries and upland vegetation indicators/apparent wetland extent. Site delineation and size is likely to be variable for a number of other reasons, including landowner participation, available funds, proposals received from contractors, etc – many of which cannot be directly correlated to site disturbance or ecological function. For this reason, we do not use the entire NMRAM assessment, or place confidence in the weighted score roll-ups that are typically part of an NMRAM report. Should one be interested, rationale for the weighting in the NMRAM score roll-up can be found in the yet-to-be-published field manual for version 2.1. For more information, contact Maryann McGraw of the NMED or NMFWRI.

While we provide a biotic site score and rating for your reference, we recommend comparisons be done with individual metrics from pre-treatment and post-treatment assessment from the same site, rather than across multiple sites. Also of note is that statistical analysis is not appropriate for NMRAM, or other low intensity, rapid field methods.

Please note that should the project area change significantly from what was originally proposed and monitored, all metrics will lose some amount of confidence on comparison as it is impractical to reexamine the original site assessment scores using new boundaries. This is an issue of concern of which GRGWA should be aware. We recommend that GRGWA attempt to minimize alterations in project boundaries once pre-treatment monitoring data has been approved for collection. Another, somewhat alternative, recommendation is that the initial monitoring regime include high-intensity modified BEMP-type plots which could be repeated in their exact initial locations, allowing collection of comparable data regardless of boundary change. We recognize that this is not always practical: boundaries change for a number of reasons and time and cost constraints can necessitate the sole use of a rapid assessment method for monitoring. We have reason to hope our outlined assessment method will still be a satisfactory indicator for site function improvement or degradation primarily because metrics in rapid assessment methods such as this are set up to have relatively low sensitivities (i.e. for a change to be reflected in the metrics, either positive or negative, disturbance on site has to be significantly altered).

From here on out, the goal of the GRGWA/ NMFWRI is that all sites will be revisited for post-treatment monitoring in 5-year intervals. It is our intention and expectation that the data collected in these intervals will reflect any significant changes in disturbance and ecological function of the site.

References

- Audubon New Mexico. (2013). Water Matters: Water for New Mexico Rivers. Albuquerque, New Mexico: Utton Transboundary Resources Center.
- Brown, J. K. (1974). Handbook for Inventorying Downed Woody Material, USDA Forest Service General Technical report INT-16. *Handbook for Inventorying Downed Woody Material*. Ogden, Utah: USDA Forest Service Intermountain Forest and Range Experiment Station.
- Bureau of Land Management. (2006). Grazing Management Processes and Strategies for Riparian-Wetland Areas, TR 1737-20.
- Claunch-Pinto Soil and Water Conservation District on behalf of the Greater Rio Grande Watershed Aliance. (2015). *Request for Proposals for Greater Rio Grande Watershed Alliance Riparian Restoration Projects.* Mountainair, NM: Claunch-Pinto Soil and Water Conservation District.
- Committee on Riparian Zone Functioning and Strategies for Management, et al. (2002). *Riparian Areas: Functions and Strategies for Management.* Washington, D.C.: National Academy Press.
- Lightfoot, D. &. (2012). *Greater Rio Grande Watershed Alliance Riparian Restoration Effectiveness Monitoring Plan.* Albuquerque, NM: SWCA Environmental Consultants.
- Lightfoot, David & Stropki, C. (2012). *Field Manual for Greater Rio Grande Watershed Alliance Riparian Restoration Effectiveness Monitoring*. Albuquerque, NM: SWCA Environmental Consultants.
- Lizarazo, I., & Elsner, P. (2009). Fuzzy segmentation for object-based image classification. *International Journal of Remote Sensing, 30*.
- Muldavin, E. B. (2011). New Mexico Rapid Assessment Method: Montaine Riverine Wetlands. Version 1.1. Final report to the New Mexico Environment Department, Surface Water Quality Bureau. 90 pp. and appendices.
- New Mexico Department of Game and Fish Conservation Services Division. (2012). Bridge and Road Construction/Reconstruction Guidelines for Wetland and Riparian Areas.
- U.S. Climate Data. (2017). *Climate New Mexico*. Retrieved from U.S. Climate Data: http://www.usclimatedata.com/climate/new-mexico/united-states/3201
- USDA NRCS. (2016, 8 10). Web soil Survey. Retrieved from https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
- USDA NRCS n.d. (n.d.). Ecological Site Description Salty Bottomland R042XA055NM .
- USDA USFS. (1996, September). Ecology, Diversity, and Sustainability of the Middle Rio Grande Basin, RM-GTR-268. (D. M. Finch, & J. A. Tainter, Eds.) Fort Collins, Colorado.

Appendix I – Photopoint Coordinates Table

Name	Latitude	Longitude
11.07_1	34.65024	106.73913
11.07_2	34.64873	106.73891

Appendix II – Modified Hink and Ohmart Categories, from NMRAM

The following is pages 39-41 in Muldavin et al.'s 2014 NMRAM for Montane Riverine Wetlands v 2.0 Manual (draft, not yet published)

Vegetation Vertical Structure Type Definitions for NMRAM

Multiple-Story Communities (Woodlands/Forests)

Type 1- High Structure Forest with a well-developed understory.

Tall mature to intermediate-aged trees (>5 m [>15 feet]) with canopy covering >25% of the area of the community (polygon)and understory layer (0-5 m [0-15 feet]) covering >25% of the area of the community (polygon). Substantial foliage is in all height layers. (This type incorporates Hink and Ohmart structure types 1and 3.) Photograph on Gila River by Y. Chauvin,2012.

Type 2 -Low Structure Forest with

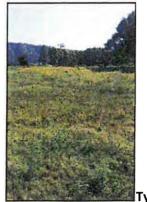
little or no understory.

Tall mature to intermediate-aged trees (>5 m [>15 feet]) with canopy covering >25% of the area of the community (polygon) and understory layer (1-5 m [3-15 feet]) covering <25% of the area of the community (polygon). Majority of foliage is over 5 m (15 feet) above the ground. (This type incorporates Hink and Ohmart structure types 2 and 4.) Photograph on Diamond Creek by Y. Chauvin, 2012.

Single-story Communities (Shrublands, Herbaceous and Bare Ground)

Type 5 -Tall Shrub Stands.

Young tree and shrub layer only (1.5-5 m [4.5-15 feet]) covering >25% of the area of the community (polygon). Stands dominated by tall shrubs and young trees, may include herbaceous vegetation underneath the woody vegetation. Photograph on San Francisco River by Y. Chauvin, 2012.


Type 6S- Short Shrub Stands.

Short stature shrubs or very young shrubs and trees (up to 1.5 m [up to 4.5 feet]) covering >10% of the area of the community (polygon). Stands dominated by short woody vegetation, may include herbaceous vegetation underneath the woody vegetation. Photograph on Lower Pecos River by E. Lindahl,2008.

Type 6W- Herbaceous Wetland.

Herbaceous wetland vegetation covering >10% of the area of the community (polygon). Stands dominated by obligate wetland herbaceous species. Woody species absent, or <10% cover. Photograph of *Carex nebrascensis* meadow on upper Rio Santa Barbara by Y. Chauvin, 2009.

Type 6H- Herbaceous.

Herbaceous vegetation covering >10% of the area of the community (polygon). Stands dominated by herbaceous vegetation of any type except obligate wetland species. Woody species absent or <10% cover. Photograph on Diamond Creek by Y. Chauvin,2012.

Type 7-Sparse Vegetation/Bare Ground.

Bare ground, may include sparse woody or herbaceous vegetation, but total vegetation cover <10%. May be natural in origin (cobble bars) or anthropogenic in origin (graded or plowed earth) Photograph on Lower Gila River by Y. Chauvin,2012.

Appendix III – Sample Datasheets

2011 Datasheet with original Hink & Ohmart

Project:											N	
Project Unit: Plot Number										_	E	
at (dd.dddd				Long (ddd.dddd):_	-		_	Elevation:	-	ft	1
Date:									/	/	1	1
Time:							C P		1	37'3"	QL a	
Plot size:	1/100 th ac fo ("small plot" 1/10 th ac for	")	ry.			5mall plat (1/100th a	N C	ec E		à.	8	
	1,10 00101		e over			Pea -		\$	Large plot (Y,oth ac)	1		/
		_			aken from/w					-	5	-
ree canopy use densiometer acing out at L1'9" flags)	Seedlings <5' (estimate aerial cover)	Saplings 5-15' (estimate aerial cover)	Shrubs <5' (estimate aerial cover)	Shrubs 5-15' (estimate aerial cover)	Graminoid (estimate aerial cover)	Forb (estimate aerial cover)	Litter (estimate ground cover)	Bare soil (estimate ground cover)	Rock (estimate ground cover)	Gravel (estimate ground cover)	Water or wet soil (estimate ground cover)	Plan Basa Bole Lest. Grou
			1 m						3	8	covery	
nk; Oh for	imart i entire	modifie Yioth c	ed stracke (uctural plot (s	R class	im)						
species Observ			ntífic name, o			ANTS cade)		Trees				
species Observ		ac plot (scier	ntífic name, o		ie, or USDA PL	ANTS cade)		Trees				
 North f PC nort PC east PC sout 	ved in 1/10 th : eeded (with w wing whitebo facing center- th to 11'9" to 11'9" to 11'9" t to 11'9"	ac plot (scier For //hiteboard): ard with nan	ntific name, o	common nam	ie, or USDA PL	ANTS code) S			STgrott (1) Typeda Type	TTES	TUR 4	

2022 Sample datasheet

GRGWA	Plot	Descri	ption	(1 of 2)	
-------	------	--------	-------	----------	--

	er:						A	dminist	rative U	nit:			
Recorde	r:						P	roject U	Init:				
Latitude	de (ddd						D	lacrople ate (DD ime:	ot: D/MM/Y	YYY):			
Elevatio	n (ft):								1	5		e Witnes	
Macroplot	Sizes			Hill Slope	(where strepes	Q:		%	1	5	USENA	ATIVE TR	EES ONL
ilze (Acres)		1/10	0 1/10	Aspect (c	ircle one):	N	E S	w			1		
Aadlus (Feet, I	Decimal Fee	1 21.7	8 37.24	Aspect az	imuth:			- II		/			
ladius (Feet, I	inches)	11' 9	r 373*	Mag Decl	ination:			·	_		**Draw loc		e on plot*
nuths:		tions; (1) f toward P	from each Bro	in all four card win's transect l	ooking	Com	nents/L	Pescripti	ion of Plo	AC:			
	•			+									
Hink & O	hmart I	Domina	nt Struct	ural Class		Soil T	exture	(4 locati	ons)				
Original:						North	1:						- 1
												-	- 1
						East:							- 1
Modified	1:				- 1	South	n:					-	- 1
						West	:						- 1
						L						_	
				Acre only) - Tr		EDLINGS OF		5 <5 INC	1		re only) - Tre	e Regen, Shi	rubs & Cart
	Condition	arman Pi		classes—Seed		005 BL CACD		Condition			lasses—Sapli		
faulte			>0.5-1.5	> 1.5' - 2.5'		>3.5' - 4.5'	Species	ILber, Dead. Sicky	>0-1"	>1-2"	>2-3*	>3-4"	>4-5*
Species	(Line_Dead. Sith)	> 0 - 0.5'											
Species		> 0 - 0.5'					11	1					
Species		>0-0.5'											
Species		> 0 - 0.5'											
Species		> 0 - 0.5'					-						

		Nativity:		AERIAL COVER	(%) (ENTIRE 1/3	Loth acre plot)	
List by Species	Status	NEI		Estimate Aer	ial Cover % for Specie	s by Lifeform	
	(L, D, S)	Unk?	Tree	Shrub	Forb/herb	Gramanoid	Cactu
	-						-
	-						
	-						-
	-						
	-						
							1
							1
	-						
	-				_		-
						-	1
TOTALS	1					-	

GRGWA Plot Description (2 of 2)

	1	GROUNI	COVER (%	6) (ENTIRE 1/:	10th acre plot)	(must total 100 %	ó)
Plant basal	Bole	Litter	Bare soil	Rock (>2.5in)	Gravel (< 2.5 in)	Water, Wet Soil	Total (%)
1		1				-	

Comments on Species Composition and/or Ground Cover:

GRGWA Trees

Observer/Recorder:___ Project/Site/Plot.__ Date

Tree#	Species	Tree cond.	OBH	ORC	No. stems	Total Tree Ht	UCrBHt	Mistletoe (%)	Comments dam- age/disease, wit• ness tree, etc.

Appendix IV – Fuels Transect Data Sheet

Obser Record								Pr	oject Ur		it:		
	Transect Length			hour Transe]	Da	acropio ite (DD/ me:	mm/yy	YY):		
	Class		Diamete	er (in)								_	
FWD	1-hr 10-hr 100-hr		0 to 0.2 0.25 to 3 1.0 to 3	1.0	- freed		A. 11-14	2.2.2		G	50		G
CWD	1000-h greater	and	3.0 and	greater	to market a					Della	Argenate sampling ci	in hadro	Endy heres recommend Acceleration completely cylinder
	Transect	Azi	muth	Slope	1.	Hr Count	10 -	Hr	Count	100 - H	r Count	Com	ment
Fine Woody Debris (L. 30, 300 hr fuels)	1				T								
51ee VIV (U, 30),1	2				T								
	Transect	Slo	pe	Log No.	_	Log Diame	eter		Decay	Class	Comm	ent	
Debris eh)		-											
Coarse Woody Debris (2000 hr fuels)		-											
0	<u> </u>	+						-			-		

GRGWA Surface Fuels

	Transect 1	45'	75'	Transect 2	45'	75'
5	Litter Depth (in)			Litter Depth (in)		
Utter 8	Duff Depth (in)			Duff Depth (in)		
	Comments?			Comments?		

Precisions: Diameter: ±0.5 in ; decay class ±1 class ; Slope ±5 percent

Decay Class Description

1 All bark is intact. All but the smallest twigs are present. Old needles probably still present. Hard when kicked

2 Some bark is missing, as are many of the smaller branches. No old needles still on branches. Hard when kicked

3 Most of the bark is missing and most of the branches less than 1 in. In diameter also missing. Still hard when kicked Looks like a class 3 log but the sepwood is rotten. Sounds hollow when kicked and you can probably remove wood from the outside with your boot. Pronounced segging if suspended for even moderate distances
 Entire log is in contact with the ground. Easy to kick apart but most of the piece is above the general level of the adjacent ground. If the central axis of the piece

lies in or below the dulf layer then it should not be included in the CWD sampling as these pieces act more like dulf than wood when burned.

Appendix V- Photos

facing center from north at 66' (2011)

facing center from north at 66' (2016)

11.07_1C,

11.07_1C, facing center

from north at 66' (2022)

11.07_1N,

facing north from center at 11.8' (2011)

facing north from center at 11.8' (2016)

11.07_1E, facing east

from center at 11.8' (2022)

facing east from center at 11.8' (2016)

11.07_1E,

11.07_1E, facing east

from center at 11.8' (2022)

facing south from center from 11.8' (2011)

11.07_1S,

facing south from center at 11.8' (2016)

11.07_1S, facing south

from center at 11.8' (2022)

11.07_1W,

facing west from center at 11.8' (2011)

11.07_1W,

facing west from center at 11.8' (2016)

11.07_1W, facing west (2022)

11.07_2C,

facing center from north at 66' (2011)

facing north from center at 66' (2016)

11.07_2C, facing center

from north at 66' (2022)

facing north from center at 11.8' (2011)

11.07_2N,

facing north from center at 11.8' (2016)

11.07_2N, facing north

from center at 11.8' (2022)

facing east from center at 11.8' (2011)

facing east from center at 11.8' (2016)

11.07_2E,

11.07_2E, facing east

from center at 11.8' (2022)

facing south from center at 11.8' (2011)

11.07_2S,

facing south from center at 11.8' (2016)

11.07_2S, facing south

from center at 11.8' (2022)

facing west from center at 11.8' (2011)

facing west from center at 11.8' (2016)

11.07_2W, facing west

from center at 11.8' (2022)