Rio Abajo North Riparian Treatment Project 16-18 Pre-treatment Monitoring Report 2016 Prepared by Kathryn R Mahan, Ecological Monitoring Specialist & Daniel Hernandez, Ecological Monitoring Technician, New Mexico Forest and Watershed Restoration Institute for the Greater Rio Grande Watershed Alliance # Contents | Acronyms and Abbreviations | 3 | |---------------------------------------------------------------|----| | Purpose of Report | 4 | | Ecological Context of Bosque Restoration | 4 | | Monitoring and Field Methods | 5 | | Low intensity Field Methods | 5 | | High-intensity Field Methods | 6 | | Estimating Vegetation Cover using eCognition Software | 6 | | Personnel Involved | 7 | | Rio Abajo North Riparian Project | 7 | | Discussion | 17 | | References | 18 | | Appendix I - Photopoint Table | 19 | | Appendix II - Photos | 20 | | Appendix III – Current monitoring methods available | 25 | | Appendix IV - Modified Hink and Ohmart categories, from NMRAM | 26 | | | | # Acronyms and Abbreviations | Acronym, Abbreviation, or Term | Explanation or Definition as used by NMFWRI | | |--------------------------------|----------------------------------------------------------------------------------|--| | BBIRD plots | Breeding Biology Research and Monitoring Database, larger circular plot types | | | BEMP plots | Bosque Ecosystem Monitoring Program, small rectangular plot types | | | FEAT | Fire Ecology Assessment Tool | | | FFI | FEAT/ FIREMON Integrated | | | FIREMON | Fire Effects Monitoring and Inventory System | | | FSA | Farm Service Agency, a department of the USDA | | | GIS | Geographic Information Systems | | | GRGWA | Greater Rio Grande Watershed Alliance | | | LIDAR | Light detecting and ranging, a remote sensing technique using light to gather | | | | elevation data | | | NAIP | National Agriculture Imagery Program (aerial imagery) | | | NDVI | Normalized Difference Vegetation Index; GIS term for a band ratio of the visible | | | | red and the near infrared spectral bands and is calculated using the following | | | | formula: (NIR – Red)/(NIR+Red) | | | NHNM | Natural Heritage New Mexico | | | NMDGF | New Mexico Department of Game and Fish | | | NMED SWQB | New Mexico Environment Department Surface Water Quality Bureau | | | NMFWRI | New Mexico Forest and Watershed Restoration Institute | | | NMHU | New Mexico Highlands University | | | NMRAM | New Mexico Rapid Assessment Method, version 2.0 | | | NRCS | Natural Resource Conservation Service | | | PC | Plot center | | | RGIS | Resource Geographic Information System | | | SWCD | Soil and Water Conservation District | | | TIFF | Tagged image file format | | | USDA | United States Department of Agriculture | | | USGS | United States Geological Survey | | | WQCC | Water Quality Control Commission | | | WSS | Web Soil Survey, a soils database of the NRCS | | # Purpose of Report This report covers the low-intensity pre-treatment vegetation monitoring assessment performed on a non-native phreatophyte removal project submitted for a portion of the Valencia SWCD Open Space Conservation Area along the San Juan Canal to the Greater Rio Grande Watershed Alliance in 2016. Following a discussion of the ecological context, and our monitoring methods, we present pertinent background, observations, and assessment results for the project. # **Ecological Context of Bosque Restoration** Neither the challenges nor the importance of working in the bosque and other riparian areas in New Mexico today should be underestimated. According to the New Mexico Department of Game and Fish Conservation Division, wetlands and riparian areas comprise approximately 0.6 percent of all land in New Mexico (2012). Despite this small percentage, estimates of New Mexican vertebrate species depending on wetland and riparian habitat for their survival ranges from 55% (New Mexico Department of Game and Fish Conservation Services Division, 2012) to 80% (Audubon New Mexico, 2013). These areas also provide flood mitigation, filtration of sediment and pollutants, and water for a variety of purposes including groundwater recharge (Audubon New Mexico, 2013). In addition, native vegetation such as cottonwoods have cultural significance to many communities. As much as these areas are disproportionately important to ecosystems and human communities, they are equally disproportionately impacted by disturbance. Anthropogenic impacts with major consequences for our riparian areas include dams, reservoirs, levees, channelization, acequias and ditches, jetty jacks, riprap and Gabion baskets, urbanization, removal of native phreatophytes, grazing by domestic livestock, excessive grazing pressure by native ungulate populations absent natural predation cycles, beaver removal, logging, mining, recreation, transportation, introduction and spread of invasive exotic species, groundwater extraction, altered fire and flood regimes drought and climate change (Committee on Riparian Zone Functioning and Strategies for Management, et al., 2002). Statewide, it is estimated that as much as 90% of New Mexico's historical riparian areas have been lost (Audubon New Mexico, 2013), and approximately 39% of our remaining perennial stream miles are impaired (New Mexico Department of Game and Fish Conservation Services Division, 2012). New Mexico *is* fortunate enough to have the Middle Rio Grande Bosque, the largest remaining bosque in the Southwest (USDA USFS, 1996). However, over the past two decades, the number of fires in the bosque has been increasing. Historically, the primary disturbance regime in the bosque has been flooding, not fire, which means the system is not fire-adapted. In fact, native species like cottonwood resprout from their roots after floods and need wet soils to germinate from seed. Flooding also promotes decomposition of organic material and keeps the soil moist which reduces the likelihood of fire. Today, overbank flow is uncommon in many areas of the Rio Grande due to the heavy alteration of the channel and flow regimes (two obvious examples are the structures defining the upper and lower extent of the Middle Rio Grande: Cochiti Dam and Elephant Butte Reservoir). This has led to low fuel moisture content and high fuel loads, as well as increased human presence in the riparian area. As a result, bosque fires are more common and more severe: they kill cottonwoods and other native species, creating spaces which are filled by non-native species such as salt cedar, Russian olive, Siberian elm, and Tree-of-Heaven. We are constantly learning more about how these species can exploit and encourage a riparian fire regime, in addition to many other changes they bring to ecosystems. Efforts geared toward the removal of these nonnative species can help to reduce fire risk, preserve native vegetation, and be part of a larger effort to restore the bosque and the watershed as a whole to a more natural and functional ecosystem. The Greater Rio Grande Watershed Alliance (GRGWA) has been working on these issues with a variety of collaborating organizations and agencies within the Rio Grande basin for several years. Since 2013, the New Mexico Forest and Watershed Restoration Institute (NMFWRI) has been working with GRGWA and the Claunch-Pinto Soil and Water Conservation District (SWCD) to begin construction of a geodatabase for all of GRGWA's non-native phreatophyte removal projects as well as to perform the formal pre- and post-treatment monitoring, utilizing the field methods explained below as well as LIDAR analysis where appropriate and available. # Monitoring and Field Methods ### Low intensity Field Methods Low intensity pre-treatment vegetation monitoring was done using an adapted version of the biotic portion of the New Mexico Rapid Assessment Method (NMRAM), v 2.1, updating recommendations made in the Field Manual for Greater Rio Grande Watershed Alliance (GRGWA) Riparian Restoration Effectiveness Monitoring and the GRGWA Monitoring Plan, developed by Lightfoot & Stropki of SWCA Environmental Consultants in 2012. (For a brief overview of both low and high intensity monitoring methods used by the NMFWRI on GRGWA projects, please see Appendix III.) For those not familiar, NMRAM was developed by the New Mexico Environment Department Surface Water Quality Bureau Wetlands Program and Natural Heritage New Mexico as a "cost effective, yet consistent and meaningful tool" (Muldavin, 2011) for wetland ecological condition assessment in terms of anthropogenic disturbance as negatively correlated with quality and functionality. The portions of NMRAM we utilized are Level 2 "semi-quantitative" field measurements taken at less detail than plot level (Muldavin, 2011). Measurements taken included relative native plant community composition, vegetation horizontal patch structure, vegetation vertical structure, native riparian tree regeneration, and invasive exotic plant species cover. The underlying method for these biotic assessments was a version of the 1984 Hink and Ohmart vertical structure classification system, modified for use in the NMRAM for Montane Riverine Wetlands version 2.0 (see Appendix IV). First, vegetation communities were mapped out by patch (polyon) according to the Hink and Ohmart system. Next, the presence of (state-listed) invasives, wetland species, and the two dominant species in each strata ("tree" >15 ft, "shrub" 4.5-15 ft, and "herbaceous" <4.5 ft) were recorded for each plant community. The native/exotic ratio in each of the patches was scored and weighted based on the percent of the project area each patch comprised. These scores were then combined with the additional biotic metrics of vertical and horizontal diversity, native tree regeneration, and overall (listed) invasive presence. The NMRAM rating system is based, on all levels, on a scale of 1 to 4, where 4 is considered excellent condition, 3 good, 2 fair, and 1 poor. We also assessed soil surface condition, which is a metric typically included in the abiotic section of the NMRAM, as well as the presence of surface fuels, which is not part of the NMRAM. Unlike the other 6 metrics we used, surface fuels were recorded on a rating scale from 0 to 1.0 where 1.0 is a continuous fuel matrix. Photopoints were established to capture images where vegetation shifts were observed and/or at representative locations throughout the site. Waypoints were marked with a Garmin GPS unit and named sequentially by site. Photos were taken facing north, east, south and west at each point. Prior to entering the field, we created a map with the project boundaries as provided by GRGWA. We combined these polygons with recent aerial imagery and identified relevant roads and other landscape features. Once on the ground, the vegetation community polygons (as determined by the modified Hink and Ohmart classification system) were hand-drawn onto this map and served as the basis for other biotic metric assessments. Upon return to the office, this polygon map and the photopoints were digitized by the monitoring technician and/or specialist. ### High-intensity Field Methods High-intensity monitoring was also done, in part, on this site. We used an adapted Bosque Ecosystem Monitoring Program (BEMP) style plot. These are 16 x 98-foot rectangles, placed approximately parallel to the river. Within these plots, we measure canopy and species, and vegetation and ground cover. We also used Brown's transects to measure surface fuels. ### Estimating Vegetation Cover using eCognition Software Object based image classification systems, such as eCognition software, allows for a semi-automated analysis of high resolution images. This approach divides the image into meaningful homogenous regions, known as image objects. These image objects are groups of pixels that are adjacent to each other and are spectrally similar. Once image objects are created, they provide a great deal of information from which an image classification can be developed (Lizarazo & Elsner, 2009). In large areas where more detailed vegetation surveys are cost prohibited, eCognition provides a means to characterize a landscape using readily available aerial photography. For the Rio Abajo North Area LIDAR, light detecting and ranging elevation data, was not available. Instead, digital ortho-imagery was used to estimate vegetation areas. 2014 NAIP (National Agriculture Imagery Program) imagery was acquired for the study area. NAIP is a USDA/FSA program to acquire 'leaf on' aerial imagery during the peak growing season. NAIP imagery for New Mexico can be downloaded by Quarter Quadrangle extent in an uncompressed TIFF format via RGIS –Resource Geographic Information System (http://rgis.unm.edu/). NAIP was collected in 2014 with the near infrared (NIR) spectral band. The 4 band imagery (Red, Green, Blue, and NIR) at 1 meter cell size is available statewide. Having the NIR band allows for a greater analysis of vegetation and the calculation of the Normalized Difference Vegetation Index (NDVI). NDVI is a band ratio of the visible red and the near infrared spectral bands and is calculated using the following formula: (NIR – Red)/(NIR+Red). This makes vegetation monitoring and analysis feasible over large areas. The classification was based on finding the right threshold values for each feature. To determine specific threshold values, information about each image object could be displayed and tested to determine if those values were appropriate for the given land cover feature. To identify dominate vegetation types, the image was first classified to two classes: Vegetation and Bare Ground (Type 7). Image properties of Hue, Saturation, and Intensity and NDVI values of the image objects were used to identify Vegetation and Bare Ground classes. The vegetation classification was further stratified to separate forested/shrub areas from herbaceous vegetation using image texture features. Texture features are created in eCognition to determine the arrangement and frequency of tonal variation in certain areas of an image. To give texture values, eCognition uses differences in grey level differences and contrast. For example, areas of forests and shrub have a higher texture value than smooth flat grassland areas. After herbaceous vegetation (Type 6H) was separated from Forest/Shrub vegetation, existing field data was used to divide the Forest/Shrub vegetation into vertical structure types; Type 1 (high structure forest with understory), Type 2 (low structure forest no understory), Type 5 (Tall Shrubs) and Type 6S (short shrub stands). The classification was exported from eCogntion and then manually edited using Erdas Imagine software. Vertical structure types were interpreted using the imagery, photographs, and field data collected on site. The resulting classification was used to determine acreage totals by vertical structure type according to the NMRAM definitions. ### Personnel Involved ### **2016 New Mexico Forest and Watershed Restoration Institute Monitoring Team:** - Kathryn R Mahan, Ecological Monitoring Specialist - Christopher B Martinez, Monitoring Technician (NMHU Student Intern) - Daniel Hernandez, Ecological Monitoring Technician ### 2016 New Mexico Forest and Watershed Restoration Institute GIS Team: • Patti Dappen, GIS Specialist ### Other persons contacted: - Fred Rossbach, Field Coordinator, Greater Rio Grande Watershed Alliance - Madeline Miller, Valencia Soil and Water Conservation District # Rio Abajo North Riparian Project Project 16-18 is located on Valencia Soil and Water Conservation District (VSWCD) property off NM Hwy 304 in Valencia County south of Belen, NM. The nearby city of Los Lunas receives an average of 9.75 inches of precipitation annually. The average high temperature is 94 degrees in July, and the average low is 18 in December and January (U.S. Climate Data, 2017). According to the NRCS Web Soil Survey, the project area is comprised of 51% Mixed Alluvial land, 7.5% Gila loam, strongly saline and alkali, and 1.5% Gila loam, strongly alkali. Ecological sites within this project include R042XA055NM Salty Bottomland (USDA NRCS, 2016). Salty Bottomland can support a range of plant communities which typically include cottonwood, salt cedar, mixed exotics (dominated by Russian olive/ Russian knapweed/ etc.), saltgrass and saltgrass-sacaton, and bottomland grassland (possibly dominated by saltgrass, giant sacaton, dropseed, muhly, burrograss, alkali sacaton, galleta, vinemesquite, and/or tobosa). Typically, the vegetation consists of a shrub/grass mixture characterized by fourwing saltbush and greasewood. Tall, mid-grass, and short grasses are present. Blue grama, foxtail, sand dropseed, spike dropseed, giant dropseed, New Mexico feathergrass and tansymustard are common. When the plant community deteriorates, there is an increase in amounts of shrubs and short grasses (USDA NRCS n.d.). Monitoring was conducted at this 60-acre site on November 18, 2016 as part of a restoration project targeting non-native phreatophytes scheduled for 2016-2017. The project is located on VSWCD property near Belen, NM. Project boundaries area ditch managed by the Middle Rio Grande Conservancy District (MRCGD) to the west, the railroad right-of-way to the north, the inside of the old racetrack to the east, and a previously proposed project (15-16 Rio Abajo) to the south. The project is sponsored by the VSWCD and is part of the VSWCD Open Space Conservation Area. This is an initial treatment to remove salt cedar and Russian olive trees, although some trees may be left for wildlife. Restoration goals include enhancing wildlife, reducing fire hazard, continuing to provide an access point for firefighters to enter the bosque, reducing soil erosion, generally restoring native riparian habitat, and providing a public example of bosque restoration. VSCWD will plant tree, shrub and ground cover species following treatment, potentially including alkali sacaton and inland saltgrass. # 16-18 Rio Abajo 16-18 is located on VSWCD property near Belen, NM. Project boundaries area ditch managed by theMiddle Rio Grande Conservancy District (MRCGD) to the west, the railroad right-of-way to the north, the inside of the old racetrack to the east, and a previously proposed project (15-16 Rio Abajo) to the south. This is an initial treatment to remove salt cedar and Russian olive trees, although some trees may be left for wildlife. Figure 1. Project 16-18 in geographic context. # 1,080 Feet 135 270 540 810 16.18 Rio Abajo North Figure 2. 16-18 Rio Abajo North project outline. Exotic species observed on the site during the pre-treatment monitoring visit included Russian olive, salt cedar (some of which appeared burned), and kochia. The kochia was most heavily concentrated on the otherwise bare ground of the old racetrack. It was also more common along the railroad tracks than in the center of the project. Toward the center of the project, saltgrass, yerba mansa and shrubs including golden currant and New Mexico olive became more common. Other native plants observed in abundance included dropseed grass. Table 1. NMRAM Scores for 16-18. | Metrics for 16.18 (November 18, 2016) | Score | |---------------------------------------|--------| | Relative Native Plant Community | 1 | | Composition | | | Vegetation Horizontal Patch Structure | 3 | | Vegetation Vertical Structure | 1 | | Native Riparian Tree Regeneration | 1 | | Exotic Invasive Plant Species Cover | 1 | | | | | Project Biotic Score (based on above | 1.4 | | ratings) | | | Project Biotic Rating | D/Poor | | _ | | | Soil Surface Condition | 3 | | Surface Fuels | 0.75 | The lowest scores for this project came in the Relative Native Plant Community Composition and Exotic Invasive Plant Species Cover metrics, due to the high percentage of invasive plants, in the Native Riparian Tree Regeneration metric due to the absence of young cottonwoods or other riparian trees, and in the Vegetation Vertical Structure metric due to the low proportion of overstory structure. The project scored best in the vegetation horizontal structure metric, because there were several different plant communities distributed across the landscape. Vegetation polygons are represented by structure type in the map in Figure 3, as well as in the NAIP vegetation classification map, Figure 4. Overall, this site scored a 1.4 out of 4 overall, which is a "D" or "Poor" biotic rating. This site also had one plot established (location shown on map below). At this plot, we collected data on vegetation cover and fuel loading using Submethods 1 and 2 outlined in Appendix III, the BEMP plots and the Brown's transects. Figure 3. 16-18 Rio Abajo project vegetation polygons. Figure 4. NAIP vegetation classification for 16-18. Table 2. 16-18 Average surface fuels from 2 transects on plot. | Fuel 1-hr 10-hr 100-hr 1000-hr All woody fuels | Average tons/acre 0.12 0.01 0 0 0.13 | | |------------------------------------------------|--------------------------------------|--| | Fuel
Duff
Litter | Avg depth (inches) 0.03 0.33 | | | Total | 0.35 | | Figure 5. Percent Vegetative Cover for plot on 16-18. Figure 6. Percent Vegetative Cover for plot on 16-18. Figure 7. Percent ground cover for plot on 16-18. Figure 8. Percent ground cover for plot on 16-18. ### Discussion We would like to clarify that we are adapting these NMRAM metrics for our own purposes. That is, we are using them both inside and outside their intended site ranges, including on larger sites (NMRAM is designed to handle a site around 100 x 200 meters), sites further from the river (NMRAM is currently in use primarily for assessing riverine wetlands), and sites defined by exotic vegetation presence rather than hydrologic boundaries and upland vegetation indicators/apparent wetland extent. Site delineation and size is likely to be variable for a number of other reasons, including landowner participation, available funds, proposals received from contractors, etc – many of which cannot be directly correlated to site disturbance or ecological function. For this reason, we do not use the entire NMRAM assessment, or place confidence in the weighted score roll-ups that are typically part of an NMRAM report. Should one be interested, rationale for the weighting in the NMRAM score roll-up can be found in the yet-to-bepublished field manual for version 2.1. For more information, contact Maryann McGraw of the NMED or NMFWRI. While we provide a biotic site score and rating for your reference, we recommend comparisons be done with individual metrics from pre-treatment and post-treatment assessment from the same site, rather than across multiple sites. Also of note is that statistical analysis is not appropriate for NMRAM, or other low intensity, rapid field methods. Please note that should the project area change significantly from what was originally proposed and monitored, all metrics will lose some amount of confidence on comparison as it is impractical to reexamine the original site assessment scores using new boundaries. This is an issue of concern of which GRGWA should be aware. We recommend that GRGWA attempt to minimize alterations in project boundaries once pre-treatment monitoring data has been approved for collection. Another, somewhat alternative, recommendation is that the initial monitoring regime include high-intensity modified BEMP-type plots which could be repeated in their exact initial locations, allowing collection of comparable data regardless of boundary change. We recognize that this is not always practical: boundaries change for a number of reasons and time and cost constraints can necessitate the sole use of a rapid assessment method for monitoring. We have reason to hope our outlined assessment method will still be a satisfactory indicator for site function improvement or degradation primarily because metrics in rapid assessment methods such as this are set up to have relatively low sensitivities (i.e. for a change to be reflected in the metrics, either positive or negative, disturbance on site has to be significantly altered). From here on out, the goal of the GRGWA/ NMFWRI is that all sites will be revisited for post-treatment monitoring in 5-year intervals. It is our intention and expectation that the data collected in these intervals will reflect any significant changes in disturbance and ecological function of the site. ## References - Audubon New Mexico. (2013). Water Matters: Water for New Mexico Rivers. Albuquerque, New Mexico: Utton Transboundary Resources Center. - Brown, J. K. (1974). Handbook for Inventorying Downed Woody Material, USDA Forest Service General Technical report INT-16. *Handbook for Inventorying Downed Woody Material*. Ogden, Utah: USDA Forest Serivce Intermountain Forest and Range Experiment Station. - Bureau of Land Management. (2006). *Grazing Management Processes and Strategies for Riparian-Wetland Areas, TR 1737-20*. - Claunch-Pinto Soil and Water Conservation District on behalf of the Greater Rio Grande Watershed Aliance. (2015). *Request for Proposals for Greater Rio Grande Watershed Alliance Riparian Restoration Projects*. Mountainair, NM: Claunch-Pinto Soil and Water Conservation District. - Committee on Riparian Zone Functioning and Strategies for Management, et al. (2002). *Riparian Areas:* Functions and Strategies for Management. Washington, D.C.: National Academy Press. - Lightfoot, D. &. (2012). *Greater Rio Grande Watershed Alliance Riparian Restoration Effectiveness Monitoring Plan.* Albuquerque, NM: SWCA Environmental Consultants. - Lightfoot, David & Stropki, C. (2012). Field Manual for Greater Rio Grande Watershed Alliance Riparian Restoration Effectiveness Monitoring. Albuquerque, NM: SWCA Environmental Consultants. - Lizarazo, I., & Elsner, P. (2009). Fuzzy segmentation for object-based image classification. *International Journal of Remote Sensing, 30*. - Muldavin, E. B. (2011). New Mexico Rapid Assessment Method: Montaine Riverine Wetlands. Version 1.1. Final report to the New Mexico Environment Department, Surface Water Quality Bureau. 90 pp. and appendices. - New Mexico Department of Game and Fish Conservation Services Division. (2012). *Bridge and Road Construction/Reconstruction Guidelines for Wetland and Riparian Areas.* - U.S. Climate Data. (2017). *Climate New Mexico*. Retrieved from U.S. Climate Data: http://www.usclimatedata.com/climate/new-mexico/united-states/3201 - USDA NRCS. (2016, 8 10). *Web soil Survey*. Retrieved from https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm - USDA NRCS n.d. (n.d.). Ecological Site Description Salty Bottomland R042XA055NM. - USDA USFS. (1996, September). Ecology, Diversity, and Sustainability of the Middle Rio Grande Basin, RM-GTR-268. (D. M. Finch, & J. A. Tainter, Eds.) Fort Collins, Colorado. # Appendix I - Photopoint Table | Name | Latitude | Longitude | |---------------|----------|-----------| | 16.18_1_NESW | 34.6207 | -106.7470 | | 16.18_2_NESW | 34.6232 | -106.7450 | | 16.18_3_NESW | 34.6274 | -106.7450 | | 16.18 PC NESW | 34.6255 | -106.7460 | # Appendix II - Photos 16.18_1_N. Taken facing north inside of polygon 1. 16.18_1_E. Taken facing east inside of polygon 1. 16.18_1_S. Taken facing south inside of polygon 1. 16.18_1_W. Taken facing west inside of polygon 1. 16.18_2_N. Taken facing north inside of polygon 2. 16.18_2_S. Taken facing south inside of polygon 2, looking into polygon 1. 16.18_2_W. Taken facing west from inside polygon 2, looking into polygon 1. 16.18_3_N. Taken facing north from inside of polygon 2. 16.18_3_E. Taken facing east inside of polygon 2. 16.18_3_S. Taken facing south from inside of polygon 2. # 16-18 Plot Photos N from PC E from PC S from PC W from PC Plot Center # Appendix III – Current monitoring methods available ### Low-intensity methods - Where: happens on all sites with GRGWA projects - Method name: NMRAM (New Mexico Rapid Assessment Method v 2.1) - Time required: 3 hours half day/ site - Repeat: done once pre-treatment and in 4-5 year intervals post-treatment - Basics: mapping vegetation communities (by vertical and horizontal structure), recording dominant vegetation in each strata (trees, shrubs, herbaceous), assessing fuel load, noting soil surface condition and native/exotic ratio at all vegetation levels, photo points - Any on-site impacts or materials: none ### **High-intensity methods** • Where: happens on select sites, in addition to low-intensity monitoring Submethod name 1: BBIRD or BEMP vegetation plots (depends on treatment area size) - Time required: approx. 2 hours/site - Repeat: both pre-treatment and in 4-5 yr intervals post-treatment - Basics: larger plots and transects documenting vegetation, photo points - On-site impacts or materials: rebar and cap #### Submethod name 2: Brown's transects - Time required: 1-1.5 hours/site - Repeat: both pre-treatment and in 4-5 yr intervals post-treatment - Basics: transects to calculate fuel loading and fire behavior, photo points - On-site impacts or materials: rebar and cap Submethod name 3: BEMP-adapted Groundwater Well Monitoring - Time required: - o Initial installation: 1-2 hours/ well (ideally 2+ wells/site) - Repeat: maintenance as needed, should be minimal - o Data offloading: 10-20 minutes/well - Repeat: at least annually (this is when we anticipate datalogger will be full and batteries will need to be changed) - Basics: install a well with a sensor which records groundwater level and temperature once an hour year round; this will reflect changes due to seasonal variation, vegetation growth, irrigation, etc. - On-site impacts or materials: shallow monitoring well (consists of capped PVC pipe extending into the ground about 3 feet below the water table and above ground approx. 2 feet (can be painted earth tones); well contains a datalogger (pressure transducer) suspended on a cable into the water); well should be protected from cattle grazing (so may require rebar around pvc visible above ground) # Appendix IV - Modified Hink and Ohmart categories, from NMRAM The following is pages 39-41 in Muldavin et al.'s 2014 NMRAM for Montane Riverine Wetlands v 2.0 Manual (draft, not yet published) # Vegetation Vertical Structure Type Definitions for NMRAM Multiple-Story Communities (Woodlands/Forests) Type 1 – High Structure Forest with a well-developed understory. Tall mature to intermediate-aged trees (>5 m [>15 feet]) with canopy covering >25% of the area of the community (polygon) and understory layer (0-5 m [0-15 feet]) covering >25% of the area of the community (polygon). Substantial foliage is in all height layers. (This type incorporates Hink and Ohmart structure types 1 and 3.) Photograph on Gila River by Y. Chauvin, 2012. Type 2 -Low Structure Forest with little or no understory. Tall mature to intermediate-aged trees (>5 m [>15 feet]) with canopy covering >25% of the area of the community (polygon) and understory layer (1-5 m [3-15 feet]) covering <25% of the area of the community (polygon). Majority of foliage is over 5 m (15 feet) above the ground. (This type incorporates Hink and Ohmart structure types 2 and 4.) Photograph on Diamond Creek by Y. Chauvin, 2012. Single-story Communities (Shrublands, Herbaceous and Bare Ground) Type 5 - Tall Shrub Stands. Young tree and shrub layer only (15-5 m [4.5-15 feet]) covering >25% of the area of the community (polygon). Stands dominated by tall shrubs and young trees, may include herbaceous vegetation underneath the woody vegetation. Photograph on San Francisco River by Y. Chauvin, 2012. ### Type 6S-Short Shrub Stands. Short stature shrubs or very young shrubs and trees (up to 1.5 m [up to 4.5 feet]) covering >10% of the area of the community (polygon). Stands dominated by short woody vegetation, may include herbaceous vegetation underneath the woody vegetation. Photograph on Lower Pecos River by E. Lindahl, 2008. Type 6W-Herbaceous Wetland. Herbaceous wetland vegetation covering >10% of the area of the community (polygon). Stands dominated by obligate wetland herbaceous species. Woody species absent, or <10% cover. Photograph of *Carex nebrascensis* meadow on upper Rio Santa Barbara by Y. Chauvin, 2009. Type 6H-Herbaceous. Herbaceous vegetation covering >10% of the area of the community (polygon). Stands dominated by herbaceous vegetation of any type except obligate wetland species. Woody species absent or <10% cover. Photograph on Diamond Creek by Y. Chauvin, 2012. Type **7**-Sparse Vegetation/Bare Ground. Bare ground, may include sparse woody or herbaceous vegetation, but total vegetation cover <10%. May be natural in origin (cobble bars) or anthropogenic in origin (graded or plowed earth) Photograph on Lower Gila River by Y. Chauvin,2012.