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Abstract 

Fire has historically been an integral part of forests in the Southwestern US. However, a policy 

of fire exclusion in the past century together with a warming and drying climate, created forests 

which are more susceptible to fires, resulting in uncharacteristic wild-fires with large high-

severity patches. Managers use a combination of thinning and prescribe burns to reduce forest 

density to help mitigate the risk of high-severity fires. However, these treatments are labor 

intensive and expensive, therefore it is important to optimize the effect of this work. Landscape 

simulation models can be a useful tool to help identify high risk areas and assess the effects of 

treatments, and are applicable over large areas, however, uncertainties in these models can limit 

their utility in decision making. In this study we examined one aspect of the underlying 

uncertainties, the initial vegetation layer. We extended a study by Krofcheck et al., (2019) and 

simulated wildfires and management in the Santa Fe fireshed using over 1000 new additional 

inventoried plots with which we interpolated the initial forest conditions. We found that using an 

increased number of inventory plots improved representation of the forest in its entirety and 

allowed to model a wider range of biomass. In addition, in forest types that were not frequently 

inventoried the simulated biomass was significantly dependent on the number of plots used for 

the initial forest interpretation. The consequential difference in biomass and its geographical 

distribution resulted in a shift of areas with high probability of high-severity fires, causing a shift 

in management areas. Although management consistently reduced probability of high-severity 

fires, the carbon dynamics depended on number of plots used for forest interpretations. Net 

ecosystem carbon balance (NECB) was always negative in the first years of the simulations 

when thinning happened but transitioned to ecosystem carbon intake was faster when using more 

plot data. We conclude that the initial forest layer is significant in its effect on fire and carbon 
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dynamics and is dependent on both number of plots available and a sufficient representation of 

the forest in its entirety. Operationalizing forest landscape models will require managers and 

researchers to work together and develop a forest inventory design applicable to this kind of 

work and determine the acceptable amount of uncertainty that will allow the use of these models 

for decision making. 
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1. Introduction 

Contemporary forest fuels management in the southwestern US involves a combination of 

thinning small diameter trees and prescribed burning to reduce tree density, ladder fuels, and 

surface fuels, which can reduce the risk of high-severity fire (Agee & Skinner, 2005; North et al., 

2021; Safford et al., 2012). Yet, these treatments can have varying degrees of effectiveness for 

reducing the risk of high-severity fire and the per unit area costs range from tens to hundreds of 

dollars per hectare for prescribed burning to several thousand dollars per hectare for thinning and 

hand-piling the cut material (the most expensive treatment; Krofcheck et al., 2017; McIver et al., 

2012; Shive et al., 2013). The most effective approach for reducing the risk of high-severity fire, 

especially in areas where consequences are greater (e.g. the wildland-urban interface), is small 

diameter tree thinning combined with prescribed burning. In the southwestern US, thinning 

combined with prescribed burning is one of the most expensive treatment combinations because 

the trees are not merchantable. Thus, preparing a landscape to receive fire and reduce high-

severity wildfire risk is contingent upon using thinning treatments in a manner that they facilitate 

prescribed burning and managing natural ignitions for resource benefit over a larger fraction of 

the landscape (North et al., 2021; York et al., 2021).  

The goals of management vary in terms of desirable outcome and planned timeline, and are often 

a balancing act of multiple objectives that can include in addition to fire severity reduction and 

forest restoration, watershed protection, habitat conservation, and carbon stabilization (Hurteau 

et al., 2013; Jones et al., 2022; Latif et al., 2022; Smith et al., 2011). Achieving near-term 

objectives, such as reducing the risk of high-severity wildfire to communities, and long-term 

objectives, such as managing for carbon storage to help regulate the climate, requires evaluation 

of trade-offs in both time and space. Accounting for trade-offs between management objectives 
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across different temporal and spatial scales becomes increasingly difficult as the number of 

objectives and interactions between them increases, requiring the use of forest landscape models 

to better understand treatment scenarios and their possible outcomes (Ager et al., 2010, 2022; 

Finney et al., 2007; Krofcheck et al., 2019).  

As resources available for management are limited, using them in the most advantageous way is 

crucial, and optimizing treatment placement has been another subject of forest landscape 

simulation studies (Ager et al., 2013; Krofcheck et al., 2018; Wei et al., 2008). In the case of 

wildfire, identifying landscape positions that have the highest probabilities of burning at high-

severity can help managers efficiently locate forest treatments. However, uncertainties in model 

output can limit their utility for decision-making. These uncertainties can be due to model 

structure (Petter et al., 2020), key processes being absent from models (Stephens et al., 2022), or 

due to errors in the underlying data such as climate projections or the use of a generalized 

vegetation parameterization (Remy et al., 2019). With all landscape vegetation models, the 

simulation is heavily influenced by the representation of vegetation conditions across the 

landscape. Uncertainty in the initial characterization of vegetation structure will likely propagate 

and amplify as dependent processes are simulated in the model, such as vegetation competition, 

drought, and wildfire. These compounding uncertainties increase the challenges associated with 

using landscape models to inform decision making at any spatial or temporal scale, and therefore 

it is critical that we 1) develop a more rigorous understanding of how the uncertainty in the 

model inputs affects variability in model output, and 2) identify mechanisms to constrain that 

uncertainty with additional data. 

In this study we evaluated the effects of forest inventory sample size on variability in the initial 

vegetation layer for an ecosystem model for the Santa Fe Fireshed in northern New Mexico. We 
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leveraged prior research by Krofcheck et al. (2019) that evaluated thinning treatment placement 

optimization and its effects on forest carbon dynamics in the Santa Fe Fireshed and additional 

inventory data from the US Forest Service to quantify how the number of inventory plots 

influences model estimates of the high-severity wildfire. We compared our results to those of 

Krofcheck et al. (2019) to determine the effect of additional inventory data on forest treatment 

placement.  

2. Methods 

2.1. Study area 

We conducted simulations in the Santa Fe fireshed, located in the Sangre De Cristo Mountains, 

east of Santa Fe, New Mexico. The fireshed is approximately 48,000 ha and has an elevation 

ranging from 1900 to 3700 m. The prominent vegetation changes with elevation and is 

comprised of piñon-juniper (Pinus edulis, Juniperus monosperma) woodlands at lower 

elevations, ponderosa pine (P. ponderosa) at mid-elevations and mixed-conifer forest and 

spruce-fir (Picea spp, Abies spp.) at high-elevations. There are occurrences of gambel oak 

(Quercus gambelii) and quaking aspen (Populus tremuloides) stands in recently disturbed areas 

in the mid- and high-elevations. At lower elevations, the Sobordoro soils have a silty clay 

skeletal mixture, which transitions to loam-dominated soils at higher elevations. Mean climatic 

conditions over the period 1980–2015 included mean annual temperature of 9.4 °C and mean 

annual precipitation of 360 mm, with greater than 50% falling as snow in the winter months at 

higher elevations (Thornton et al., 2012). 

2.2. Model and Parametrizations 

As the starting point for our modeling experimentation, we replicated the model inputs, 

landscape structure and all parameterizations used in Krofcheck et al. (2019), and fixed all 
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random seeds used to govern stochastic draws from distributions in the succession and wildfire 

components of the model. Our ultimate goal was to ensure that any differences we observed 

relative to the previously published work could be attributed to our experimental manipulations. 

The full modeling structure and parameterization are described below.  

We used the Landscape Disturbance and Succession II (LANDIS-II) model (Scheller et al., 

2007) with the photosynthesis and evapotranspiration (PnET) succession, Dynamic Fuels and 

Fire, and Biomass Harvest extensions to simulation forest growth and disturbance using a 100m 

resolution. The core model simulates forest growth and succussion for each pixel (henceforth 

referred to as site) using a demography-based approach to track species-specific age cohorts of 

biomass. Each species is parameterized independently with a unique set of parameters that 

govern their growth, succession, dispersal, and mortality across a spatially explicit landscape 

(Scheller et al., 2007). We used the (PnET) succession extension (de Bruijn et al., 2014), based 

on elements of the PNET-II model (Aber et al., 1995). The PnET succession extension models 

carbon and water flux using species-specific physiological parameters. We used the parameters 

previously validated by Remy et al. (2019) for this area, which were obtained from previously 

published data and the TRY database, and validated against eddy covariance tower data 

(Gustafson et al., 2015; Kattge et al., 2011; Remy et al., 2019). We used the Dynamic Fuels and 

Fire extension (Sturtevant et al., 2009) to simulate wildfires. This extension was parameterized 

for the study area by Krofcheck et al. (2019) using regional fire size data from Geospatial Multi-

Agency Coordination (https://rmgsc.cr.usgs.gov/outgoing/GeoMAC/historic_fire_data/), 

previously published fuels data (Forestry Canada Fire Danger Group, 1992; Hurteau et al., 2016; 

Krofcheck et al., 2017; Syphard et al., 2011), and climate projections from the Multivariate 

Adaptive Constructed Analogs v2 collection to develop fire weather distributions 

https://rmgsc.cr.usgs.gov/outgoing/GeoMAC/historic_fire_data/
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(https://climate.northwestknowledge.net/MACA/). We used the Biomass and Harvest extension 

(Gustafson et al., 2000) to simulate thinning treatments.  

We used a Cross between three elevation zones (https://datagateway.nrcs.usda.gov/) roughly 

corresponding to the vegetation transitions determined by the Southwest Regional Gap Analysis 

(https://swregap.org/) and six soil types (State Soil Geographic dataset, 

https://datagateway.nrcs.usda.gov/) to define 18 unique edaphic and climatic zones. These were 

used as ecoregions in the LANDIS-II core model and PnET succession extension. We used the 

same three elevation zones to define three different fire regions, which the model requires to 

define areas of similar fire weather, fire size distribution, and number of attempted ignitions.  

We used monthly climate data, radiation, and atmospheric carbon dioxide concentration 

produced by Krofcheck et al. (2019). These were based on projections from the Localized 

Constructed Analogs statistically downscaled climate projection from five climate models forced 

with Representative Concentration Pathway 8.5 from the Coupled Model Inter-comparison 

Project Phase 5. The climate models chosen were Community Climate System Model (CCSM), 

Centre National de Recherches Météorologiques (CNRM), Flexible Global Ocean-Atmosphere-

Land System Model (FGOALS), Geophysical Fluid Dynamics Laboratory (GFDL), and Model 

for Interdisciplinary Research on Climate (MIROC5-ESM 2) as their projections capture the 

range of temperature and precipitation for the study area.  

2.3. Initial Communities Data 

The initial communities layer is the base vegetation layer that sets the starting conditions for the 

exchange of carbon, water, energy, species interactions, disturbance effects, and other landscape 

processes. Given the importance of vegetation conditions for determining an optimal solution for 

thinning treatments, representing the spatial distribution of actual forest conditions well is central 

https://climate.northwestknowledge.net/MACA/
https://datagateway.nrcs.usda.gov/
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to generating simulation outputs that are useful to management decision-making. The initial 

treatment optimization study in this landscape (Krofcheck et al., 2019) used 68 Forest Inventory 

and Analysis (FIA) plots from within the Santa Fe National Forest that had been inventoried in 

2010 or later and had not burned since 2005 (Fig. 1). Forest types represented by the FIA plots 

were piñon-juniper, ponderosa pine, Douglas-fir (Pseudotsuga menziesii), Engelman spruce 

(Picea engelmannii) and limber pine (Pinus flexilis). The latter three were grouped into a general 

mixed-conifer forest type. The authors then used elevation, transformed aspect using 

Topographic Radiation Aspect Index, TRASP (Roberts & Cooper, 1989), and a tasseled cap 

transformation of spectral data from Landsat 8 (available at https://www.usgs.gov/landsat-

missions/landsat-8) as predictors for Random Forest models and used the rfUtilities library 

(Evans & Murphy, 2018) to select the most parsimonious model for each forest category 

separately. Existing vegetation classification from the Southwest Regional Gap Analysis 

(SWReGap, https://swregap.org/) using the ‘yaImpute’ library (Crookston & Finley, 2008) was 

used to stratify the measured plots for the imputation. We determined plot sampling intensity by 

calculating the relative area of land each plot represents within its forest type.  

To evaluate the influence of additional plot data on the initial communities layer and its effects 

on model behavior, we used data collected as part of the planning process by the US Forest 

Service. These data were located entirely within the study area and included 1072 plots from 111 

stands inventoried in 2011, where each stand included between 3 and 31 plots (Fig. 1). Plot data 

were collected using a common stand exam protocol using variable radius plots. The specific 

Basal Area Factor (BAF) prism chosen for each stand was a function of stand density and they 

ranged from 10 to 30 BAF. We had coordinates for the centroid of each stand, but not for each 

individual plot, which effects the imputation process. We used the tree data from each plot to 

https://www.usgs.gov/landsat-missions/landsat-8
https://www.usgs.gov/landsat-missions/landsat-8
https://swregap.org/
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determine a specific forest type and generalized category (e.g. piñon-juniper, ponderosa pine, 

mixed-conifer), corresponding to the FIA classification, and added an aspen forest type, resulting 

in a total of four generalized forest types. We also defined non-forested areas and included two 

generalized species parameterizations to represent shrubs that resprout and shrubs that do not 

resprout following fire. We used all FIA and common stand exam (CSE) plot data (n=1140) to 

generate a new initial communities layer following the same method as Krofcheck et al. (2019) 

in R v4.1.2 (R Core Team, 2021).  

Fig. 1. Study area boundary with approximate Forest Inventory and Analysis (FIA) plot locations (n = 68) and the 

Common Stand Exam (CSE) plots (n = 1072) represented by stand locations (n = 111). Each stand contains 

between 3 and 31 plots.
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2.4. Simulation Analysis 

Given the importance of the initial communities layer for determining where high-severity fire 

probability is greatest on the landscape, we sought to estimate the uncertainty in the initial 

communities layer from not having coordinates for every CSE plot because the USFS data 

applies coordinates for a stand to all plots sampled in the stand. We also sought to estimate the 

uncertainty due to the number of plots used to interpolate the initial communities layer. 

To estimate the uncertainty in the initial communities layer that is due to not having coordinates 

for all CSE plots, we re-ran interpolations randomly selecting one plot for each set of stand 

coordinates. This led to 31 initial communities layers, which we used to initialize the model with 

the five climate projections, for a total of 155 simulations. We compared the aboveground carbon 

following model initialization of these initial communities layers with the initial communities 

layer that we created using all plot data and that we used for our management simulations. We 

calculated the difference in aboveground carbon between each layer and the one we used in our 

simulations to determine how much the initial communities layer is influenced by this source of 

uncertainty.  

Inventory data can be costly to collect and limited data availability for developing the initial 

communities layer is a source of uncertainty that can influence identifying locations with a high 

probability of high-severity fire. To determine the influence of the number of plots used in the 

development of the initial communities layer, we produced five additional initial communities 

layers with differing numbers of underlying plot data. For four of the five layers, we halved the 

number of CSE plots used in the interpolation each time (e.g. 536, 268, 134, 67) and combined 

those with the FIA data. For the fifth initial communities layer, we only used the 68 FIA plots. 

For each of the layers, we randomly selected plots from each forest type proportional to the 
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prevalence of each forest type on the landscape. We then initialized the model using each of 

these initial communities layers using the five climate projections and compared the 

aboveground carbon following model initialization to that of the initial communities layer that 

we used for our simulations.  

We quantified differences between our primary initial communities layer and that of Krofcheck 

et al., (2019) by comparing the difference in quantity and distribution of aboveground carbon at 

the beginning and end of the simulations. We ran an independent t-test to assess the difference in 

carbon between the two studies at each site every 10 years for each of the climate models, and 

computed the percent of area with a significant difference (p < 0.01) in aboveground carbon. We 

compared treatment location as determined by the probability of high-severity fire between our 

initial communities layer and that of Krofcheck et al. (2019). We calculated Net Ecosystem 

Carbon Balance (NECB) by subtracting carbon lost from the system (treatment and wildfires) 

from carbon gained (photosynthesis) and then relativized the treatment scenario NECB values to 

the no-management scenario for both our simulations and those of Krofcheck et al. (2019). Data 

processing and analysis was conducted using R v4.1.2 (R Core Team, 2021). 

2.5. Treatment scenarios 

To develop the optimized treatment placement scenario, we first ran simulations that included no 

management to identify locations where landscape conditions were such that there was a high 

probability of high-severity wildfire. We ran the no-management simulations using the same five 

projected climate data sets and fire weather data described above. We ran 25 replicate 

simulations using each of five projected climate data sets, for a total of 6250 simulation years. 

We used fire severity raster data from these model outputs to quantify the probability of high-

severity by dividing the number of years with high-severity fires by the total number of fire years 
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per site. We then identified sites with a probability of high-severity fire greater than 0.3 and 

targeted those locations in the treatment scenario simulations, assigning treatment to those areas 

first.   

To determine the type of treatment we used the probability of high-severity fire in combination 

with slope and forest type. We limited our management simulations to the ponderosa pine and 

dry mixed-conifer forest where the combined ponderosa pine and Douglas-fir aboveground 

carbon was at least 65% of the total. We used the same thinning and prescribed burning 

treatments as Krofcheck et al. (2019), which were designed to approximate common treatments 

for the region. Thinning treatments simulated thinning from below by removing approximately 

30% of the biomass, preferentially removing the youngest cohorts (Hurteau et al., 2011, 2016) 

and was only applied to ponderosa pine forest and confined to slopes <30%, to account for a 

common limitation on mechanical thinning. We simulated prescribed burning based on historic 

mean fire return intervals, with all ponderosa pine burned using a 10-year return interval and 

forests co-dominated by ponderosa pine and Douglas-fir burned using a 15-year return interval. 

The forest type and probability of high-severity fire are highly dependent on the initial 

communities layer which defines the initial forest conditions. As a result, our treatment 

placement map differed substantially from the one in Krofcheck et al. (2019).  

To examine the effects of the treatment on the landscape we produced a new probability of high-

severity fires raster and calculated the difference in aboveground carbon between the 

management and no management scenarios of this study at the end the simulations. 

We ran simulations over a 50-year period, using climate model projections for years 2000-2050. 

We ran 25 replicates for each of the five climate projections, totaling 125 simulations each for 
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the no-management and management scenarios. Fire weather distributions tracked projected 

climate and were updated each decade to account for changes in temperature and precipitation.  

3. Results 

Our comparison of the 31 initial communities layers derived from randomly selecting plots from 

the forest stands sampled by the USFS indicated that the specific plots selected to represent each 

stand had a relatively small influence on aboveground carbon. The total aboveground carbon of 

the whole fireshed in teragrams at year 1 of the simulations was similar when comparing 

simulations within each of the five climate models, and the median for all 155 simulations and 

across the five climate models was 3.601 Tg of carbon with an interquartile range (IQR) of 0.146 

Tg. (Fig. S1a). We calculated the difference between the year 1 aboveground carbon of the initial 

communities layer we used for our management simulations (hereafter new layer) and the mean 

of year 1 aboveground carbon generated from replicate simulations of the 31 initial communities 

layers and found that only 560 hectares of the total 48,957 ha within the study area had a 

difference of more than 20 Mg ha-1 of carbon, the median of the difference was -0.068 and the 

IQR was 0.859 Mg ha-1 of carbon (Fig. S1b). Typically, grid cells that had higher carbon values 

than those in the new layer were the aspen forest type and grid cells that had lower carbon values 

than the new layer were dominated by limber pine or ponderosa pine forest with a large limber 

pine component. This result is likely due to the fact that these forest types are less common in the 

CSE plot data set.  

The aboveground carbon distributions for ponderosa pine and mixed-conifer forests were fairly 

similar to the new layer, regardless of the number of plots used to develop the initial 

communities (Fig. 2a). Estimates of aspen carbon differed substantially from the new layer, with 

median values decreasing by 12.22 Mg ha-1 or more (Fig. 2a). For piñon-juniper, median values 
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were fairly consistent regardless of the number of plots used to develop the initial communities 

layer, but variability decreased substantially when fewer than half of the available plots were 

used (Fig. 2a), demonstrating the importance of adequate sampling to capture the variability in 

vegetation conditions (Fig. S2). The density distribution of aboveground carbon was similar for 

the new layer developed using all 1072 plots and the layer developed using half the plots. 

However, the layers that used fewer than half of the plots had decreased variability and were 

underestimating lower carbon grid cells of approximately 30 Mg C ha-1 and lower (Fig. 2b). The 

reduction in carbon variability with decreased numbers of plots used to inform the initial 

communities layer, when mapped spatially, shows that the largest discrepancies between the new 

layer and the others occurs in the vegetation types (e.g. aspen and piñon-juniper) that are 

sampled less intensively than the more common ponderosa pine and mixed-conifer forest types 

(Fig. 2c). 
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Fig. 2.  a) Boxplot of aboveground carbon per site at year 1 of the simulation using different initial communities 

layers separated by forest type. X axis indicates number of available new plots in addition to 68 FIA plots used to 

create the initial communities layer. b) Density distribution of aboveground carbon at year 1 of the simulations for 

each of the initial communities layers. c) Difference in aboveground carbon at year 1 between the new initial 

communities layer developed using all 1072 plots and initial communities layers developed using fewer plots. 

Positive values indicate higher aboveground carbon in the initial communities layer developed using all 1072 plots. 

When we compared the model results from our initial communities layer developed using the 68 

FIA plots in addition to the 1072 CSE plots (new layer) with those from the Krofcheck et al. 

(2019) initial communities layer developed using only the FIA plots (hereafter ‘old layer’) we 

found the new layer results in higher overall aboveground carbon and greater carbon variability 

following model initialization (Fig. 3a, b), with statistically significant differences occurring at 

the site-scale (Fig. 3c). While these differences persisted throughout the 50-year simulation 
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period, the difference in aboveground carbon between the new and old layer decreased by the 

end of the simulation period (Fig. 3c).   

 

Fig. 3. a) Comparison of aboveground carbon when using FIA plots only (Krofcheck et al., 2019) and FIA + CSE 

plots (this study) for the no management scenarios. Top is the difference in aboveground carbon. Positive values 

indicate this study has a higher value than the previous study. Bottom is density plots. Left column is year 1 of the 
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simulations and right column is year 50. b)Boxplot of aboveground carbon in each of the studies for year 1 and 50. 

Red line is the mean. c) Percent of sites with significantly different aboveground carbon (p < 0.01 for t-test). Points 

are mean for all climate models and error bars are standard deviation.   

The differences in aboveground carbon density between the new and old layers led to differences 

in the spatial distribution of the probability of high-severity fire (Fig. 4a). Given these 

differences, the distribution of thinning and prescribed fire treatments varied between the old and 

new layers (Fig. 4b). The carbon density and resultant probability of high-severity fire from the 

new layer resulted in areas identified for thinning and burning combined or burning alone 

shifting east and up in elevation. The new treatment map also had approximately 2000 ha fewer 

identified as requiring thinning when compared to the old treatment map (Fig. 4b right).  
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Fig. 4. a) Probability of high severity fire in Krofcheck et al., 2019 (FIA plots) and this study (FIA + CSE plots). b) 

The optimized treatment map from Krofcheck et al, 2019 (left), treatment map for this study (middle) and the 

changes in thinning treatment locations (right). Each zone indicates the type of treatment in Krofcheck et al., 2019, 

and what it has changed to, for example, yellow indicates areas that were not thinning in the previous study and 

were designated to undergo thinning in the new study.  

We compared the simulation outputs of the management and no-management scenarios using the 

new initial communities layer and found that the management scenario, as expected, decreased 
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the probability of high-severity fire where treatments were implemented (Fig. 5a).  The reduction 

in high-severity in the management scenario led to an increase in landscape carbon storage over 

the 50-year simulation compared to the no-management scenario (Fig. 5b). The carbon increases 

were primarily in areas that were treated because the treatments reduced fire severity, while in 

areas that were untreated there was little difference between the management and no-

management scenarios.  

 

Fig. 5. a) Probability of high severity fire for the management scenario in this study. b)Difference in aboveground 

carbon at the end of 50 years of simulation between the management and no management scenarios in this study 

using the new initial communities layer. Positive values indicate higher carbon in the management scenario. 

Given the differences between the new and old layers in terms of probability of high-severity fire 

and resultant treatment location, we compared the effects of the management scenario on 

cumulative NECB relative to the no management scenario. We found similar trends for both the 

new and old initial communities layers. The greater carbon density in simulations using the new 

layer resulted in larger decreases from thinning and burning treatments early in the simulation 
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period compared to simulations using the old layer (Fig. 6). Transition to positive cumulative 

NECB relative to no-management scenario occurred faster in simulations using the new layer 

(~18 years) than in simulations using the old layer (~24 years). This difference is due to the fact 

that the landscape carbon density is higher for simulations with the new layer.  

 

Fig. 6. Cumulative net ecosystem carbon balance (NECB) of the optimized scenario of the previous study 

(Krofcheck et al., 2019) and the management scenario of this study relative to the no management scenarios of the 

respective studies. NECB is the balance between carbon intake from photosynthesis and carbon loss due to thinning, 

prescribed burns, and wildfires. Positive values indicate more carbon intake to the system in the management 

scenario relative to the no management scenario.  

4. Conclusions 

The frequency and severity of wildfires is predicted to increase as the climate gets hotter and 

drier, but mitigating these events is possible by restoring ecologically appropriate fire. Given the 

size of the area in the Southwestern US that has missed multiple fire return intervals, there is 

more area requiring management than there are resources to support management. Forest 

landscape models can help identify landscape positions with the highest probability of high-

severity wildfire, but their utility for management planning is based on how well the model 

represents actual conditions. Operationalizing forest landscape models that have largely been 
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research tools to-date will require forest managers and researchers working collaboratively to 

both inform forest inventory sample design and to determine the amount of uncertainty in model 

output that is acceptable when using model outputs to inform decision-making.  
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